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What We’ll Discuss
• Batch vs. streaming... and why
• Data science vs. data engineering
• Serving models in production
• CI/CD Systems for ML
• Example architecture
• Updating Models in Production
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Batch vs. streaming… and why
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State of the art phone!



Energy
Medical

Finance

… and IoT

Telecom

Mobile

Information value 
has a half life;

it decays with time
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Data Science vs. 
Data Engineering
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Software 
Engineering toolbox

Data Science toolbox
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• Comfortable with 
uncertainty 
• Less process oriented
• Iterative, experimental

• Uncomfortable with 
uncertainty
• Process oriented
• Agile Manifesto
• … which does not 

mention data!
https://derwen.ai/s/6fqt
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Data Scientists Data Engineers

https://derwen.ai/s/6fqt


Streaming Imposes New Requirements
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If you run something long 
enough, all rare problems 

eventually happen!
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• Reliability - fault and “surprise” tolerant
• Availability - “always on”
• Low latency - for some definition of “low”
• Scalability - up and down
• Adaptability - ideally without restarts
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In other words: 
Microservices

…

Browse

REST

AccountOrders

Shopping
Cart

API Gateway

Inventory



Serving Models in 
Production
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A Recent Kubeflow User Survey

@deanwamplerFrom this Kubeflow Overview

https://docs.google.com/presentation/d/1fW5iTRwW65EIfe3clcsthMG7xjb_BOuwHhwppgvwZm0/edit#slide=id.g5028e32a9a_2_54


• ~60% worry about missed opportunities
• ~50% worry about loss of data team 

productivity
• ~45% worry about slow time-to-market
• ~40% worry about customer dissatisfaction

Lack of Tool/Process Integration

@deanwamplerFrom a recent Lightbend survey



•Why did the model reject that loan application?

Can You Answer this Question?

@deanwampler

(After you’ve been sued for discrimination…)



•Which version of the model was used?
• How was it trained? 
•When was this model deployed?
•… and other questions you’ll need to answer to 

understand what happened…

Which model was it?

@deanwampler



CI/CD for ML?

@deanwampler
a.k.a “MLops”



• Version control - for models and code
• Automation - builds, tests, quality checks, 

artifact management & delivery
• Necessary for reproducibility

CI/CD Process Required (1/4)
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https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


• Supports different launch configurations: 
• “dark” launches
• A/B, Canary, and other testing scenarios

CI/CD Process Required (2/4)
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https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


• Auditing
• Which model used to score this record?
• Which records used to train this model?
• Who accessed this model and when?

CI/CD Processes Required (3/4)
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https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


• Auditing
• Which model used to score this record?
• Which records used to train this model?
• Who accessed this model and when?

CI/CD Processes Required (3/4)
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Models A
re 

Data

https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


• Auditing
• Which model used to score this record?
• Which records used to train this model?
• Who accessed this model and when?

CI/CD Processes Required (3/4)
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GDPR - What if a customer asks you to 
delete their data? Do you also delete the 

models trained with that data?

https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


•Monitoring
• Resource utilization changes?
• Quality metrics:
•Match performance during training?
• Concept drift?

CI/CD Processes Required (4/4)
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https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


• AutoML
• Data safety and lineage
•Model fairness and reproducibility
•Model and feature artifact management

https://www.oreilly.com/ideas/9-ai-trends-on-our-radar
@deanwampler

What’s Different from Microservice CI/CD?
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• CI/CD prefers deterministic measures of quality. 
How should you support the extra statistical 
indeterminacy data science introduces?

What’s Different from Microservice CI/CD?



•Kubeflow - for Kubernetes
• SageMaker - for AWS users
•MLFlow - from the Spark community
•… plus emerging vendors

CI/CD Suites for ML

@deanwampler

https://en.wikipedia.org/wiki/Continuous_integration#Common_practices%20for%20a%20list%20of%20common%20practices


Systems - Kubeflow

https://kubeflow.org


Example 
Architectures
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Example 
Architectures
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Timely Information 
Integrated with 

Your Apps
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TensorFlow Serving

https://medium.com/sap-machine-learning-research/tensorflow-serving-in-enterprise-applications-our-experience-and-workarounds-part-1-33f65bfbf3d7
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Model Serving as a Service
• Pros:
• A familiar integration 

pattern 
• Decouples “concerns”: AI 

tools, scaling, upgrading, 
…
• One system for training 

and scoring
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• Cons:
• Overhead of invocation, 

e.g., REST
• ML Pipeline becomes a 

unique production work 
flow

Model Serving as a Service
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Embedded Model Serving
• Pros:
• Lowest scoring 

overhead - interprocess 
communication only 
used for model updates
• Performance tuning 

focuses on one system, 
the data pipeline
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Embedded Model Serving
• Cons:
• Model parameters must 

be serialized
• More complexity
• Model serving library 

must be “compatible” 
with training system
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Updating Models in 
Production @deanwampler
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• Concept Drift - models grow stale
• They have a half life, too
• So, periodically retrain, then serve the new 

model, ideally without downtime

Model Updates
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• How do you measure model quality?
•What’s the trade-off between model 

performance vs. retraining cost?
• How far back in the data set do you go 

when training?  

Retraining Considerations



@deanwampler

Data	Center

Mini-batch,	Batch

Spark

Low	Latency
Microservices

Ka;a	Streams
Akka	Streams

…

Sessions

Streams

Storage

Device

1

2. → Model Training
3. ← New models

2, 3

4. ← Model Storage
5. → Boot up, 
historical data

4, 5

6. → Data Pipeline 
7. → Model Serving 
8. ← Anomalies

6, 7, 89

10

Spark

Microservice
Microservice
Microservice

Device	Session
Microservices

Persistence

Ka+a Cluster

Broker
1. Telemetry

9. Ingest Scores

10. Corrective Action

Complex to update 
embedded models!

Data	Center

REST,	gRPC,	…

Spark

Low	Latency

Ka9a	Streams
Akka	Streams

…

Sessions

Streams

Storage

Device

1. Telemetry1

2. → Model Training

3

3. ← Model Storage
4. → Boot up, 
historical data

3, 4

5. → Data Pipeline 
7. ← Anomalies

5, 78. Ingest Scores8

9. Corrective Action9

TensorFlow,	…

Microservice
Microservice
Microservice

Device	Session
Microservices

Persistence

Ka+a Cluster

Broker 66. Model Serving

Model updates can be 
straightforward
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• Kind of Model
• Parameters and hyperparameters
•When trained
• Data used for training
•When deployed, undeployed, etc.
•…

Auditing
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• Quality metrics
• Serving metrics (how many records, scoring 

times…)
• Provenance of decision to retrain
• The metrics gathered above that were used to 

decide when to retrain

Auditing
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Mars last Summer

Dusty Milky Way



References
• Ideas:
• Ben Lorica on 9 AI Trends
• Paco Nathan’s Data Governance Talk
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References
• A few research papers, etc.
• Incremental training 
• an example
• Continual learning
• Explainability
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• Kubeflow
•MLFlow
• DVC 
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References
• General Information about Stream Processing
• My O'Reilly Report on Architectures
• Streaming Systems Book
• Stream Processing with Apache Spark
• Designing Data-Intensive Apps book
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References
• Other Talks
• Strata Talk on ML in a Streaming Context
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References
• Tutorials
• Model serving in streams
• Stream processing with Kafka and 
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