
Aquarium:
Aspect-Oriented

Programming for Ruby

Dean Wampler, Object Mentor
dean@objectmentor.com

April 7, 2008

1Monday, April 7, 2008

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

What is AOP?
Is it necessary for Ruby?
Aquarium in action

2Monday, April 7, 2008

class Account
 attr_reader :balance

 def credit amount
 raise "..." unless amount >= 0
 @balance += amount
 end

 def debit amount
 raise “…” unless amount < @balance
 @balance -= amount
 end
end

3Monday, April 7, 2008

Clean
and

Simple
4Monday, April 7, 2008

But, Real Applications Need:

class Account
 attr_reader :balance
 def credit amount; …; end
 def debit amount; …; end
end

Transactions

Persistence

Security

5Monday, April 7, 2008

Tangled

Account

Code

6Monday, April 7, 2008

Scattered

Persistence,

Code

Transactions,
Security, ...

7Monday, April 7, 2008

Modularity

is

Compromised.

8Monday, April 7, 2008

Rails Solution

class Account < ActiveRecord::Base
 …
end

9Monday, April 7, 2008

But what if you want
“PORO’s”??

(Plain Old Ruby Objects)

10Monday, April 7, 2008

I would like to say...

Before returning the Account balance, read the
current balance from the persistence store.

After the Account balance changes, update the
new balance in the persistence store.

Before changing the Account balance,
authenticate and authorize the user.

11Monday, April 7, 2008

require ‘aquarium’
class Account
 include Aquarium::DSL

 before :calls_to => [:credit, :debit] \
 do |join_point, object, *args|

 object.balance = read_from_database ...
 end
 ...

reopen Account
add “DSL” methods

The type the aspect acts on is inferred to be Account

12Monday, April 7, 2008

 …
 after_returning_from :calls_to=>[:credit, :debit] \

 do |join_point, object, *args|

 update_in_database (object.balance,…)
 end
 ...

13Monday, April 7, 2008

 …
 before :calls_to => [:credit, :debit] do |jp, *args|

 raise “…” unless user_authorized
 end
end

14Monday, April 7, 2008

Can’t we just use

Metaprogramming?

15Monday, April 7, 2008

Ruby’s metaprogramming
gives us the mechanisms
we need...

16Monday, April 7, 2008

…, but it’s nice to implement
our design concepts using
the same idioms.

17Monday, April 7, 2008

Some AOP Terms:

18Monday, April 7, 2008

Aspect

Aspect.new :before, :calls_to => :credit, \
 :in_type => Account do |jp, obj, *args|
 # do something
end

A modularity construct that incorporates
Pointcuts and Advice.

Alternative to before method used before.

19Monday, April 7, 2008

Aspect

Aspect.new :before, :calls_to => :credit, \
 :in_object => my_account do |jp, obj, *args|
 # do something
end

Can advise individual objects

20Monday, April 7, 2008

Aspect

Aspect.new :before, :calls_to => :credit, \
 :in_object => my_account , \
 :advice => proc

Use a Proc instead of a block

21Monday, April 7, 2008

Join Point

JoinPoint.new :type => Account,
 :method => :credit

JoinPoint.new :object => account1,
 :method => :credit

A single execution point.

:type is one of many synonyms for :in_types
:method is one of many synonyms for :calls_to

22Monday, April 7, 2008

Pointcut†

†Yes, no space, unlike Join Point

Pointcut.new :types => /.*Account$/,
 :calls_to => [:credit, :debit]

A “query” over all Join Points.

Pointcut.new :in_object => account1,
 :calls_to => /it$/

23Monday, April 7, 2008

Advice:

Before

After returning

After raising

After (… returning or raising)

Around

24Monday, April 7, 2008

Before Advice

Aspect.new :before, :pointcut => … do |jp,o,*a|
 log “Entering: #{jp.inspect}”
end

Do something before the Join Point.

include Aquarium::DSL
before :pointcut => … do |jp, object, *args|
 log “Entering: #{jp.inspect}”
end

25Monday, April 7, 2008

After Returning Advice

Aspect.new :after_returning_from, … do |jp,o,*a|
 log “Leaving: #{jp}”
end

Do something after returning from the Join Point.

include Aquarium::DSL
after_returning_from :pointcut => … do |jp,o,*args|
 log “Leaving: #{jp}”
end

Or :after_returning

26Monday, April 7, 2008

After Raising Advice

Aspect.new :after_raising, … do |jp, obj, *args|
 log “ERROR: #{jp.context.raised_exception}”
end

Do something iff the Join Point raises.

include Aquarium::DSL
after_raising :pointcut => … do |jp, obj, *args|
 log “ ERROR: #{jp.context.raised_exception}”
end

27Monday, April 7, 2008

After Advice

Aspect.new :after, … do |jp, obj, *args|
 log “Escaped from: #{jp}”
end

Do something after a return or raise...

include Aquarium::DSL
after :pointcut => … do |jp, obj, *args|
 log “Escaped from: #{jp}”
end

28Monday, April 7, 2008

Around Advice

Aspect.new :around, … do |jp, obj, *args|
 log “before: #{jp}”
 jp.proceed # You decide to invoke join point
 log “after: #{jp}”
end

“Wrap” a Join Point.

include Aquarium::DSL
around :pointcut => … do |jp, obj, *args|
 …
end

29Monday, April 7, 2008

A Few Other AOP Terms:

30Monday, April 7, 2008

Introduction†

class MyClass
 def do_this; …; end
end

class MyClass # reopen MyClass
 def do_that; …; end
end

Adding new attributes, methods to a class.
We already have it with Ruby!!

†a.k.a Inter-Type Declaration

31Monday, April 7, 2008

Cross-Cutting Concerns

When the natural boundaries of different
domains cut across each-other’s natural

boundaries.

32Monday, April 7, 2008

Example: Refactor Rails
~175 uses of alias_method in Rails

33Monday, April 7, 2008

module ActiveRecord::Associations::ClassMethods
 def has_and_belongs_to_many (assoc_id,
 options => {}, &extension)
 reflection =
 create_has_and_belongs_to_many_reflection (
 assoc_id, options, &extension)
 …
 old = "destroy_without_habtm_shim_for_
 #{reflection.name}"
 class_eval <<-END
 # next slide...
 END
 end

34Monday, April 7, 2008

alias_method #{old}, destroy_without_callbacks
def destroy_without_callbacks
 #{reflection.name}.clear
 #{old}
end

35Monday, April 7, 2008

...
 reflection =
 create_has_and_belongs_to_many_reflection (
 assoc_id, options, &extension)
 …
 before :calls_to => :destroy_without_callbacks \
 do |jp, obj, *args|
 class_eval ”#{reflection.name}.clear”
 end
 end

Refactoring with Aquarium

36Monday, April 7, 2008

Refactoring Account
Handle “overdraft” requirements as an aspect,
so we can vary it independently, possibly per
client, per type of account, etc.

37Monday, April 7, 2008

class Account
 attr_reader :balance

 def credit amount
 raise "..." unless amount >= 0
 @balance += amount
 end

 def debit amount
 raise “…” unless amount < @balance
 @balance -= amount
 end
end

Move this logic to an aspect

38Monday, April 7, 2008

class Account
 attr_reader :balance

 def credit amount
 raise "..." unless amount >= 0
 @balance += amount
 end

 def debit amount
 @balance -= amount
 end
end

39Monday, April 7, 2008

class Account # Reopen class
 attr_accessor :max_overdraft
 before :calls_to=> :debit, :in_type=> :Account \
 do |jp, account, *args|
 if (account.balance - args[0]) < -max_overdraft
 raise “…”
 end
 end
end

40Monday, April 7, 2008

Exercises

aspectprogramming.com/papers/

Aquarium_RubyAOP_exercises.zip

1. Method tracing

2. Advising method_missing

3. AO design - safer pointcuts

41Monday, April 7, 2008

References

This presentation:

aspectprogramming.com/papers

aquarium.rubyforge.org

aosd.net

42Monday, April 7, 2008

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

