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What is AOP?
Is it necessary for Ruby?
Aquarium in action
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class Account
  attr_reader :balance

  def credit amount
    raise "..." unless amount >= 0
    @balance += amount
  end

  def debit amount
    raise “…” unless amount < @balance
    @balance -= amount
  end
end
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Clean
and

Simple
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But, Real Applications Need:

class Account
  attr_reader :balance
  def credit amount; …; end
  def debit  amount; …; end
end

Transactions

Persistence

Security
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Tangled

Account

Code
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Scattered

Persistence,

Code

Transactions,
Security, ...
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Modularity

is

Compromised.

8Monday, April 7, 2008



Rails Solution

class Account < ActiveRecord::Base
  …
end
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But what if you want 
“PORO’s”?? 

(Plain Old Ruby Objects)
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I would like to say...

Before returning the Account balance, read the 
current balance from the persistence store.

After the Account balance changes, update the 
new balance in the persistence store.

Before changing the Account balance, 
authenticate and authorize the user.
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require ‘aquarium’
class Account
  include Aquarium::DSL

  before :calls_to => [:credit, :debit] \
 do |join_point, object, *args|

    object.balance = read_from_database ...
  end
  ...

# reopen Account
# add “DSL” methods

The type the aspect acts on is inferred to be Account
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  …
  after_returning_from :calls_to=>[:credit, :debit] \

 do |join_point, object, *args|

         update_in_database (object.balance,…)  
  end
  ...
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  …
  before :calls_to => [:credit, :debit] do |jp, *args|

         raise “…” unless user_authorized 
  end
end
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Can’t we just use 

Metaprogramming?
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Ruby’s metaprogramming 
gives us the mechanisms 
we need...
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…, but it’s nice to implement 
our design concepts using 
the same idioms.
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Some AOP Terms:
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Aspect

Aspect.new :before, :calls_to => :credit, \
       :in_type => Account  do |jp, obj, *args|
  # do something
end

A modularity construct that incorporates 
Pointcuts and Advice.

Alternative to before method used before.
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Aspect

Aspect.new :before, :calls_to => :credit, \
     :in_object => my_account  do |jp, obj, *args|
  # do something
end

Can advise individual objects
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Aspect

Aspect.new :before, :calls_to => :credit, \
     :in_object => my_account , \
     :advice => proc

Use a Proc instead of a block
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Join Point

JoinPoint.new :type => Account, 
    :method => :credit

JoinPoint.new :object => account1, 
    :method => :credit

A single execution point.

:type is one of many synonyms for :in_types
:method is one of many synonyms for :calls_to
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Pointcut†

†Yes, no space, unlike Join Point

Pointcut.new  :types => /.*Account$/, 
    :calls_to => [:credit, :debit]

A “query” over all Join Points.

Pointcut.new  :in_object => account1, 
    :calls_to => /it$/
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Advice:

Before

After returning

After raising

After (… returning or raising)

Around
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Before Advice

Aspect.new :before, :pointcut => … do |jp,o,*a|
  log “Entering: #{jp.inspect}”
end

Do something before the Join Point.

include Aquarium::DSL
before :pointcut => … do |jp, object, *args|
  log “Entering: #{jp.inspect}”
end
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After Returning Advice

Aspect.new :after_returning_from, … do |jp,o,*a|
  log “Leaving: #{jp}”
end

Do something after returning from the Join Point.

include Aquarium::DSL
after_returning_from :pointcut => … do |jp,o,*args|
  log “Leaving: #{jp}”
end

Or  :after_returning
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After Raising Advice

Aspect.new :after_raising, … do |jp, obj, *args|
  log “ERROR: #{jp.context.raised_exception}”
end

Do something iff the Join Point raises.

include Aquarium::DSL
after_raising :pointcut => … do |jp, obj, *args|
  log “ ERROR: #{jp.context.raised_exception}”
end
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After Advice

Aspect.new :after, … do |jp, obj, *args|
  log “Escaped from: #{jp}”
end

Do something after a return or raise...

include Aquarium::DSL
after :pointcut => … do |jp, obj, *args|
  log “Escaped from: #{jp}”
end
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Around Advice

Aspect.new :around, … do |jp, obj, *args|
  log “before: #{jp}”
  jp.proceed       # You decide to invoke join point
  log “after: #{jp}”
end

“Wrap” a Join Point.

include Aquarium::DSL
around :pointcut => … do |jp, obj, *args|
  …
end
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A Few Other AOP Terms:
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Introduction†

class MyClass
  def do_this; …; end 
end

class MyClass     # reopen MyClass
  def do_that; …; end 
end

Adding new attributes, methods to a class.
We already have it with Ruby!!

†a.k.a Inter-Type Declaration
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Cross-Cutting Concerns

When the natural boundaries of different 
domains cut across each-other’s natural 

boundaries.
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Example: Refactor Rails
~175 uses of alias_method in Rails
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module ActiveRecord::Associations::ClassMethods
  def has_and_belongs_to_many (assoc_id, 
            options => {}, &extension)
    reflection =
       create_has_and_belongs_to_many_reflection (
            assoc_id, options, &extension)
    …
    old = "destroy_without_habtm_shim_for_
             #{reflection.name}"
    class_eval <<-END
      # next slide...
    END
  end
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alias_method #{old}, destroy_without_callbacks
def destroy_without_callbacks
  #{reflection.name}.clear
  #{old}
end
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...
    reflection =
       create_has_and_belongs_to_many_reflection (
            assoc_id, options, &extension)
    …
    before :calls_to => :destroy_without_callbacks \
      do |jp, obj, *args|
         class_eval ”#{reflection.name}.clear”
      end
  end

Refactoring with Aquarium
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Refactoring Account
Handle “overdraft” requirements as an aspect, 
so we can vary it independently, possibly per 
client, per type of account, etc.
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class Account
  attr_reader :balance

  def credit amount
    raise "..." unless amount >= 0
    @balance += amount
  end

  def debit amount
    raise “…” unless amount < @balance
    @balance -= amount
  end
end

Move this logic to an aspect
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class Account
  attr_reader :balance

  def credit amount
    raise "..." unless amount >= 0
    @balance += amount
  end

  def debit amount
    @balance -= amount
  end
end
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class Account    # Reopen class
  attr_accessor :max_overdraft
  before :calls_to=> :debit, :in_type=> :Account \
  do |jp, account, *args|
    if (account.balance - args[0]) < -max_overdraft
      raise “…”
    end
  end
end
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Exercises

aspectprogramming.com/papers/

Aquarium_RubyAOP_exercises.zip

1.  Method tracing

2.  Advising method_missing

3.  AO design - safer pointcuts
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